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Abstract

In this paper we consider classes of nonlinear systems for which the optimal
(minimum variance) estimator is finite dimensional. Finite dimensional optimal
nonlinear state estimators are derived for bilinear systems evolving on nilpo-
tent and solvable Lie groups. These results are extended to other classes of

systems involving polynomial nonlinearities. Finally, the concepts of exact
differentials and path-independent integrals are used to derive optimal finite

dimensional estimators for a further class of nonlinear systems.

i. INTRODUCTION optimal estimators. Such an investigation not

only identifies systems for which optimal estima-
It is well known that the class of linear dynami- on identifies systems for which optimal stima-

cal systems with linear observations and white
vides valuable theoretical insight into the under-

Gaussian plant and observation noises is particu-
lying structure of optimal estimation for general

larly appealing, because the optimal state estima-

tor consists of a finite dimensional linear system 
nonlinear systems.

(which is easily implemented with the aid of a There is, ir. fact, a class of nonlinear systems

digital computer). In general, the optimal (mini- which possesses a great deal of structure -- the

mum variance) estimator for a finite dimensional class of bilinear systems. Such systems have been

nonlinear system consists of an infinite dimensio- studied by s:everal authors [1]-[12, and many tools

nal system of moment equations, and approximations. from the theories of Lie groups and differential

must be made for practical implementation. geometry have proved to be. quite useful. Estima-

Consequently, one is led to investigate subclasses tion for bilinear systems on abelian Lie groups is

of nonlinear systems which admit finite dimensional discussed by Lo and Willsky (8], and some optimal

finite dimensional estimators are derived; these

results are generalized to a larger class of

systems by Willsky [9].
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stochastic system driven by the innovations. (0)

These results are extended to other systems with

polynomial nonlinearities. In addition, the con- 2(n) (n-1) g(n-l)] {[L ,L ] L1 ,L2 ,0 (n-I) ,

cepts of path-independent integrals and exact n > 1, terminates in {0}. 2 is nilpotent if the

differential forms are used to prove the exis-
lower central series of ideals

tence of finite dimensional estimators for ano-

ther class of nonlinear systems. 20 .

2. NOTATION AND FORMULATION OF THE PROBLEM n-l1 A n-1
2 {LL 2 1l"Te' L 2  ' 1,n > 1

The basic bilinear equation considered in this

paper is terminates in (0). 2 is abelian if 9,() = (0).
N

X(t) = (A0 + I ui(t)A )X(t); X(0) I (1) We state here two results conserning canonical

representations of nilpotent and solvable Lie

where the Ai are given k x k matrices, X is a algebras which will be particularly germane to our

k x k matrix, u. is the i componenent of u,and
k x k matrix i study; the reader is referred to E23] for further

u is the n-dimensional "colored noise" process properties of solvable and nilpotent Lie algebras

generated by the finite dimensional linear and groups. Let ' denote the complex numbers,

system gl(n, W) denote the space of n x n matrices with

dx(t) F(t)x(t)dt + /2 (t)dw(t) (2) complex entries, and GL(n,W) denote the space of

nonsingular complex n x n matrices.
u(t) 

" 
C(t)x(t) (3)

Lemma 1 123., p.214]: Let -be a Lie algebra
Here w is a standard Brownian motion process,

of matrices in gi(n,Q). Then 2'is solvable if
Q > 0, x(0) has a Gaussian distribution indepen-

1/2 and only if ttpre exists a matrix P C GL(n,%).
dent of w, and the pair [F(t), (t) is

such that, fo: all elements A C 2, the matrix
stabilizable [18]. The existence of a unique

B - PAP-' is n upper triangular form
solution to (1), (2) is proved in [15] ,[16]

Although X by itself is not a Markov process, it (bij = 0 for > j).

can be shown that the pair (X,x) is Markov. Lemma 2 2 1, p.224]: Let2 be a Lie algebra of

As in the deterministic case [1], the solutior, X matrices in gi(n, ). Then ? is nilpotent if and

of (1) evolves on a matrix Lie group. More spe- only if there exists a matrix P E GL(n,W) such

cifically, we define = (Ai LA to be the matzix that, for all elements A C , the matrix B = PAP

Lie algebra generated by (Ai , i=0, 1,...,N); i.e., has the block diagonal form

' is the smallest subspace of k x k matrices c'on- b (A)

taining {Ai , i=0, 1,... ,N and closed under the

commutor product [P,Q] = PQ-QP. We also define 0 (A) 0

the matrix Lie group G = {expI)G associated with)

Yto be the smallest group (under matrix multi- .A

plication) containing exp L for all L 2. If 0 0

X(0) C G, then X(t) E G for all t > O.

In the sequel we will be primarily concerned

with systems in which J'is a solvable or nilpo- .

tent Lie algebra; such systems evolve on solvable The functions k: 2. are linear. Furthermore,

or nilpotent Lie groups. kk([:, ] ) = o.

Definition 1.. A Lie algebra 2is solvable if
te The block form for nilpotent Lie algebras will be

the derived series of ideals [23]
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called the nilnotent canonical form. gL(k, ) by

The first estimation problem to be discussed in- adA(B) AB- , [A,B]

volves the state equations (1)-(3) and the p-di-

mensional observation process The notation adA denotes the i
th power of the

dz(t) = H(t)x(t)dt + R1/ 2 (t)dv(t) (4) operator adA

where R > 0 and v is a standard Brownian motion Lesma 3: Consider the equations (1)-(4), and

independent of w and x(O). This observation pro- let be the ideal in (AL spanned by
let Z be the ideal in 8 (A spanned by

cess is of interest in the problem of estimating

the attitude of a rotating rigid body by means of ad i=0,...,k2-1.

a strapdown inertial navigation system [5] , [7].

Define the k x k matrix valued process
The criterion for the optimal estimate De the k x k matrix valued process

-Aot
(X(tjt),x(tlt)) will be the minimization of the Y(t) - .e X(t) (6)

conditional error covariance Then there exists a matrix D(t) such that Y satis-

B[(x(t) - x(tt))'(x(t) - R(tlt)) fes

+ t r(X(t)-R(tIt)'(X(t) - X(tlt))} I z (t Hiyi() Yt) 7

where "tr" denotes trace and zt = ( (s) ,0<s<t). i-i
It is well known [14] that the causal minimum- where { .... i is a basis for 2o and

variance estimates are given by the conditional

means y(t) - D(t)x(t) (8)

In addition, X can be computed according to
2(tit) - Et[X(t)] =EX(t)Zt]

At

x(tit) = Et[x(t)] E[x(t)IZt] x(tlt) a A t  (tlt) (9)

(we will use the three notations for conditional Lemma 3 enables us, without loss of generality,

expectation interchangeably). The computation of to examine the estimation problem for Y (t)

x(tlt) is performed by the finite-dimensional evolving on the normal subgroup GO ={ exp.0 G ,

(linear) Kalman filter; moreover, the conditional
rather than for X(t) evolving on the full Lie

density of x(t) given z
t is Gaussian with mean

group G = (exp )G . The particular case with which
x(tlt) and nonrandon covariance P(t) [14]. As

we will be concerned is that in which. is solvable
remarked in Section I, the computation of X(tljt)

and 20 is nilpotent. In fact, it can easily be
requires in general an infinite dimensional system shown that if is nilpotent, then must be

of equations. We will show in the succeedinger the converse is not true.
solvablej how' ver, the converse is not true.

sections that X(tlt) can be computed with a According to emma 3, for such systems we need only
finite-dimensional nonlinear estimator if (1)-(3)

consider the *,ase in which A - 0 and 2= 2 is
evolves on certain nilpotent or solvable Lie otent. o o

groups.

3. EDUCTI THE GE L PROBL Example 1: Assume that Ao is upper triangular,
3. REDUCTION Or THE GE;ERAL PROBLEM

and (Al,... ,A n } are strictly upper triangular

In this section we show tiat some estimation pro-
blems on solvable Lie groups can be solved by (diagonal elements are zero). Then X is solvable

and on is nilpotent.

considering an estimation problem on a particular o

nilpotent Lie group. The first lerma generalizes Cxam f1.2t In th finJ t l nrll ,, l.:tr

a result of Wilisk I 'sh' 1 th. :s ina)q, hiq). .
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By means of Lemma 2, the problem can be further

reduced to the consideration of Lie algebras in 0 1 A 0 0 11 rO 0 01
nilpotent canonical form. 2 [00 0 0 A4

_Lm 4- Consider (1)-(4), where A o 00 Then {A, A A 4 is a basis for gn(3) The
and 2 is nilpotent. Then there exists a matrix 2r n(3) The
P C GL(k,9) such that solution of (1) can be expressed in closed form as

X(tIt) a PY(tjt)

where y satisfies (7) and m 1  '"..." , are in

nilpotent canonical form.

Finally, by means of the following trivial lemma, Yl(t) i (t) Yl(t)
we reduce the problem to the consideration of one e y 2 (t) e [y 3 (t)+ (t)

block in the nilpotent canonical form.

:Y, (tJ Y1 (t)Lemma 5: Consider (1)-(4), where Ao a 0 and X(t) 0 e e Y4 (t)

(A1 '..A, are in nilpotent canonical form.

Then X(t) has a block diagonal form conformable were e
with that of (A1 ... A. t

Thus the system (1) can be viewed as the direct i(s)ds (11)

sum of a number of subsystems; for each 0
and

ki-dimensional subsystem, (A1I,... ,AN gn(ki) 1

(here we have defined gn(m) to be the Lie x(t) = x ()x(2)da2do (12)f (2) 4 (2 2(1
subalgebra of gl(m,W) consisting of the upper 0 0
triangular matrices with equal diagonal elements).

We now state the major theorem on finite dimen-

sional estimation for such'systems.

Theorem 1: Consider (1)-(4), where Ao 0 Remark: In the sequel we will apply, without

and (Al,...' AN gn(k). Then the conditional further comment, a version of the Fubini theorem

[17] which permits the interchange of integration
mean X(tit) can be computed by.a finite-dimensio-

and conditional expectation, Since we are dealing
nal system of nonlinear stochastic differential

only with integrals of products of Gaussian random
equations.

processes, th, use of the Fubini theorem is easily
Theorem 1 is proved by induction: the case k=3 justified [16

will be proved in Section IV, and the induction
It is evident from (10) that the computation of

step is proved in [16]. We note that our result (tt in ptular t)) require
X(t t) (in pa-ticular, X (tit)) requires the

also includes the result in [8] as a special case. owege of he
knowledge of the statistics of the entire process

4. PROOF FOR k=3 {x(s), 0 < s < t} given z . Therefore we first

For simplicity of notation, the theorem will be define the conditional cross cross-covariance

proved for the case C(t) = I; the proof is pre- P(01,O2,t) = E[(x(01)-x(0 1lt)) (x(a2)-x('2 It).iz]
cisely the same for arbitrary C(t). For k=3,

and prove two crucial Lema".we assume that n-N=4, and Ao , A and prove tIruc

SPRODUCIBILIT OPO E
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Lemma 6: The joint conditional density *(t) IF(t) - P(t)H'(t) R (t)H(t)] Y (t);

X(Ol),X(2) V) (O) -I (15)

()x( (,V 
t ) is Gaussian with nonrandom

where the Kalman filter error covariance matrix
conditional cross-covariance P(a ,a t).onditionl co covinc 2 ) P(t) P(t, t, t) is computed by the Riccati

Proof: First, the conditional density is equation

Gaussian because xt and zt are jointly Gaussian
P(t) F P(t) P(t) + P(t) P'(t) + Q(t)

random processes. Assume c0 > 02 then

p (V,Vh zt) - P(t)H'(t) R-l t) H(t)P.t) (16)
Px(o) ,x( 2) (VI

Leamm 7: The conditional cross-covariance

SPx( 1) ( x(2) ',z) px( 2 ('oz) satisfies

t . P(C, t, t) - K(t, a) P(t) (17)Px (vIx(C2) V',z 2 px(V I z t ) (13)
x( 2 2 2 where

where z0  {z(s), <s< t).
2 K' (t,a) -[F' (t) + P-t) (t) )] K'(t, a);

Each of the densities in (13) is the result of a K' (, 0) = I (18)
linear smoothing operation; hence, each is

Gaussian with nonrandom covariance Proof: Let

%112(t) and P( 2 2 ',2 t), respectively [20]. P(O,t) = E[(() - x(oIo))(x(t) - 2(tlt))'], and
consider

Thus the cross-covariance satisfies tt
P(C.t,t) - P(a,t) E t(x(l a) - ;(t))

P 1 1'2(t) = P:(ql l t) - P(lo 2 ,t).- (x(t) - x(tlt))') (i9)

'P (2' 2 ,t) P' (0 1 ,o 2 ,t) Since x(oo) - P(olt) is measurable with respect
t

to zt , the projection theorem implies that (19)
and P(ol,o2,t) is also nonrandom (here P(C 2 ,0 2 ,t) equals zero. The proof is concluded by noticing
is invertible because [F,Q1/ 2 is stabilizable). that (d,t) = K(t,a) P(t) [21].

Lemma 6 allows the off-line computation of Returning to the proof of Theorem I for k-3, we
of P(a0l, 2 ,t) via the equations of akernaak [24] first augment the state of (2) with
(for 0 < 2) Yi(t), i'l,...,4 (if a particular yi can be ob-

tained as a I inear combination of the x's, we
P(al 2't) 2(a, ) 2' 2' need not augrent the state with that yi). Then

t the Kalman Filter for the system (2), (4), (11)
l 1 -1 generates x(t t) and y(tlt). We define the 8x8-P( I 1 ) '(, H'() R r).

02 conditional covariance matrix

.H(T) (T, O2 )dT]P( 2) F P (o2,t) S(01 a2,t)V(ola 0 -1
(14) :;'(al o2,) T(o ,O 2' )

where

RODUCMLn -IR
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S(0 1 , 2 , t) Et[(x(O) - (Ollt)). of the form

.(y(a 2 ) - YC(2 t))] W(t,o) = U(t)V(O) (28)

62  then (c(t) is the output of a finite dimensional

fJ P(0l,T,t)dT (20) linear system driven by (t) [19], and a(tjt)

0 can be computed by the linear finite dimensional

Kalman filter for the augmented state

T( l,a,2t) t )  - Y(l t)) . (x' (t) a' (t)).

.(y( 2)  Y(O2Jt))'] It can easily be shown that

1 2 t[eY (t)
P(T,,T2 ,t)dTldT2  (21)

0 0 )
e 1 2P (01 a ,t)

We also dcfine T(t) T(t,t,t), S(t) S(t,t,t), e [P24 1 2t)

v(t) = V(t.,t,t).
+ (x 2 ( 11t) + S1 2 (ta 1 ,t))(x 4 (21t) + S14 (t,a 2 t))]

The characteristic function of a Gaussian
(29)

random vector x with mean m and covariance P is Hence

given by 
Et [el (t )  (t)]

14 (u) = E[exp(iu'x)] = exp[i u'm - 1 u'Pu] (22)
x 2

Thus (for j=1,2,3) e 1

Sl(tt) + T11(t) t  f fx 2 1 ) x4 ( 2 ) 2d

Yl(tt (i) = (23). 0 0

It can al. o be shown that 
1 t

12(t t) [2(tt) + T 12(t)le + 1 2 (t, t) x 4  2 ) d 2

(t) * [y2(tlt) + 2 (tit) +1 T (t)

(24) L 0

Yl (t 1t ) + T1
X23(t .t) [y 4(t t) + T14(t)]e y

(25) + Ei J S (t,02 ,t) x (0 )a do

yt l(t) 0 0
E Y3(t) = [Y3(tt) + T13(t)

l(tt) + Tt (t) t 0
Se (+ S12 (t, ,t) S14 (t,2,t) (30)

(2G) J
0 0

Since (23)-(26) represent instantaneous nonlinear

functions ,fy(t t), they can be computed with a Consider the :;econd term in (30). Lemma 7 implies

finite di 3nlsional estimator. that V(o,t,t) can be written as

Now consider "(t) (see (12)); the approach V(o,t,t) = L(t,0) V(t)

here will e the r.iduction of this problem to where

(t t) 1-: (t~ a t )] • AH: (27) L' (t,) W (1_0)

iAPRODUCIBILITY OF THE
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ullet u12W
V-1 (t) U(t) Etx2(t) Y4 (t)]= x2 (t t) 94 (tjt) + S2A(t) (36)

U12 (t) U22 t)  which is computable "finite dimensionally".

Since S12 is the (1,6) element of V, we have We have that the gain term
that

a E [y(t) x'(t) - y(tl t) x'(tjt)

B Ef Sl2(tIl't) x4 2 ) do2dl t 1
0 0 f t[x2(o1)x (o)xI(t)]

0 0

= En I 1 2 (t,al't y 4 (o) dol t1(t) Et

Et 
'[f e L(t,O) y4(a)do V(t)el + K4 (t' 2)  E[x 2 (a)] do 2 do P(t)

th E K (t,) y4()d 1

(where e. is the j unit vector) can be 03
computed with a finite dimensional linear t
estimator. fE x2 1 K4(t 2 do2d . P(t)

Similar reasoning implies that the third term 0 0

in (30) A= (Et[8'(t,] + E[a(t) P(t) (37)

Et S14 (t2,t) x2( 1 do2d where K denotes the ith row of K. Since
0t P(Ot,t) and f P(02,t,t) are both separable,

Fe 21 (t,2do x ()d
Et e L(t 2 )d02  X 2(l) (37) and hence (35) can be computed finite dimen-

sionally. The proof for k=3 is now complete.

V(t)el t t)] V(t)e (33) The optimal 2stimator for the 3x3 nilpotent system

Can be corputed with a finite dimensional linear (10) consist; of a Kalman filter for the augmented
estimator. state consis:ing of x, y, a, 8, 6, and E

(defined in :2), (11), (37), (37), (32), and (33)
Let y be defined by respectively with observations (4), together with

dy(t) -x(t) Y4(t) dt; y(O) = 0 (34) ' the nonlinea: stochastic equation (35). These
are followed by nonlinear transformations as shown

Then the nonlinear filtering equation [22] yields in (23)-(26) and (30).

dy(tlt) = !t[x 2 (t) Y4 (t)] dt A block diagram illustrating the nonlinear esti-

mator is shovwn in Figure 1; notice that the esti-
+ Et[y(t) x'(t)] - y(tt) x'(tlt)}. mator is driven by the innovations process

-1 dv(t) P dz(t) - H(t) x(tlt) dt.
•'(t) n-1 (t) [dz(t)-1l(t) x(t t)dt] (35) d(t) dz(t) H(t) x(tt) dt.

The first term in (35) (the drift term) can be 5. (,:I;Ai.JZArIIIr

written as

OPPRoDi I
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Theorem 2: Consider (1)-(4), where 2is t 0 u

solvable and 2T0 is nilpotent. Then the condi- (t) - ... .. ( .1 ( )
tional mean X(tjt) can be computed with a finite 0 0 0

dimensional system of nonlinear stochastic . Ml ( ) " M( n )do ...d k
differential equations. 1

If, however, is solvable and 20 is not where {M I are arbitrary deterministic matrix -

nilpotent, the optimal estimator will be infinite valuedfunctions. The subscripts j }, {m },

dimensional. For example, if k=2 we must compute {n I are not necessarily distinct, and i and 9

the conditional expectation are not necessarily less than or equal to k.

S( 1 t Then y(tlt) and Et e i+l y(t) can be computed

x 2 (s) p x1(TdT with a finite dimensional system of nonlinear

stochastic differential equations.

I x 3 (T)d s 6. PATH-INDEPENDENT INTEGRALS

0 The results of this section are based upon the

ee 16] for further details).work of Brockett [19] and Gruber [13] on stability

analysis using exact differentials and path-inde-

A proof similar to that for Theorem 2 yields a pendent integrals. We will consider equation (2)

further generalization. with x(t) Rn, in which it will be assumed that
each component x. (t) is m. - times mean-square

Theorem 3: Consider the equations (2)-(4) i times mean-square

and (m.s) differentiable (mn may be equal to zero for

N Some i); let k. be the number of components of x
X(t) = (Ao(t) + ui(t)Ai)X(t); X(O) = I (38) which are at l ast j-times m.s. differentiable.

i=l
Also, we defin. Si to be the kj x n selector

Let = {A1 ,...,AN, A (t) (Vt)ILA, and let matrix which selects the components of x that are

T 0 be the ideal in 2 generated by {A1,..l N}. at least j-times m.s. differentiable:

Assume that 270 is nilpotent. Then the condi- S = 1 if m > j and m < .forl<t<il
tional mean X(tt) can be computed with a finite i1 1 - 1

dimensional system of nonlinear stochastic
SP ' 1 if m. > j and m, j for i +1<<i -1,differential equations. pIi 1 - p-i ----p

P P

Remark: Notice th.t if A (t) is time-varying. for p>1

S = 0 otherwise
the nilpotency of .0 dQes not imply that X(t) P,q

evolves on a solvable Lie group. Finally, let

Theorem 1 can also be extended to other systems j(j) = dJ i [sx(t)] (39)

with polynomial nonlinearities (the proof is dt

similar) 
If m max (m.) and f is a continuous function,l<i<n

Theorem 4: Consider the linear system des-

the random process
cribed by (2) and (4), and define

REPRODUCIBILIY OF THE
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is said to be independent of path (in the mean- Theorem : Consider the linear system descri-
square) if there exists a function g such that

bed by (2) -,nd (4), where x(O) is known. Let
Y(t) = g(x(t),...,x(m-l)(t),x(0),... (m-) (0)) B(t) = Y(t) + 6(t) (43)

(41)
where equality in (41) is in the mean-square where y is t path-independent integral defined by

sense (these definitions could also be placed in (40), and Et[6(t)] = 0. Then Y(tlt) can be com-
the "almost sure" framework). puted with a finite dimensional system of nonlinear

stochastic differential equations.
First we consider the case m=l. If g is twice

continuously differentiable, and x(0) is known, Finally, we state a theorem concerning the inte-

then Y(tlt) satisfies the nonlinear filtering grals of qu.1dratic differentials, which is based

equation [22J on a result of Gruber [13].

^ Et[g Theorem C: Consider the linear. system describeddy(t t) = {E g'(x(t))F(t)x(t)]

by (2) and (4), where x(0) is known. Define the
+ Et tr(Q(t)gxx (x(t)))]dt scalar differential operator

+ {Etly(t)x,(t] - y(tt) '(t t)} . dm  m-1 d i

p(D) = - + p --- (44)
-H'(t)R-(t) [dz(t)-II(t)x(tlt)dt] (42) dt i=0 dt

where g is the gradient and g is the matrixx xx-1
of second partials. Since x and its deriva- p(s) = sm + 0 s (45)
tives are Gaussian, it is easy to see that (42) i=0

can be computed in terms of the conditional mean and the k x k matrix differential operator
a m

and covariance of x; thus the estimate Y(tlt) of
a path-independent integral can be computed with Q() Qi - (46)
a finite dimensional nonlinear estimator. This i=0 dt

result can obviously be extended to the case in q
which m > i. Q(s) = Qi s i  

(47)

Example 3: Define y. as in (11). If

t where q < m. Assume that the matrix R(s) satisfies

Sf i )() + xj(0)y.()]do p(s) Q'(s) + p(-s) Q(s) = R(-s) R(s) (48)0

Then
SYi(t)yj(t) - yi(0)yj(0). t

Y(t) = 2 < p(D)Smx(G), Q(D)Smx(O) >
then y(tlt) is finite dimensionally computable..

0 - < R(D)Smx(), R(D)smx() > do
Example 4: Assume x(0) =,0, and let

t is independent of path, and Y(tlt) can be computed
Y(t) J < T(a)S x(a) + T(a)x ((o), with a finite dimensional system of nonlinear

0 stochastic differential equations.
T (G)S x(() > do

where "<,>" denotes inner product. Then Acknowledgtment: The authors would like to thark

y(t) < (t)1x(t), T(t)1x(t) > Professor Roger Brockett of Harvard University for
many helpful discussions and for suggevting the

and Y(tlt) is finite drinonsionally computable.
use of IItIir lop iLtLegrt hiS I 14i Llare

A simple extension of these ideaL is the foll,wing.
context.
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